k-nearest neighbor graph is a key data structure in many disciplines such as manifold learning, machine learning and information retrieval, etc. NN-Descent was proposed as an effective solution for the graph construction problem. However, it cannot be directly transplanted to GPU due to the intensive memory accesses required in the approach. In this paper, NN-Descent has been redesigned to adapt to the GPU architecture. In particular, the number of memory accesses has been reduced significantly. The redesign fully exploits the parallelism of the GPU hardware. In the meantime, the genericness as well as the simplicity of NN-Descent are well-preserved. In addition, a simple but effective k-NN graph merge approach is presented. It allows two graphs to be merged efficiently on GPUs. More importantly, it makes the construction of high-quality k-NN graphs for out-of-GPU-memory datasets tractable. The results show that our approach is 100-250x faster than single-thread NN-Descent and is 2.5-5x faster than existing GPU-based approaches.


翻译:k- 近邻图形是许多学科的关键数据结构,如多重学习、机器学习和信息检索等。 NN- 白是作为图形构造问题的有效解决办法提出的。 但是,由于方法需要大量的内存访问,它无法直接移植到 GPU 。 在本文中, NN- 白已经重新设计,以适应 GPU 结构。 特别是, 内存访问量已大大减少。 重新设计充分利用了 GPU 硬件的平行功能。 同时, NN- 白的通用性以及简单性都得到了很好的保护。 此外, 提出了一个简单而有效的 k- NN 图形合并方法。 它允许两种图形在 GPU 上高效地合并。 更重要的是, 它使得为 GPU- 模类数据集建造高品质的 k- NN 图形成为可牵引力的。 结果显示, 我们的方法比单读 NN- 白速度快100- 250x, 比现有的GPU 方法快2.5-5x 。

0
下载
关闭预览

相关内容

2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡一分钟】无监督学习的立体匹配方法(ICCV-2017)
泡泡机器人SLAM
8+阅读 · 2018年10月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
Arxiv
3+阅读 · 2018年3月13日
VIP会员
相关VIP内容
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡一分钟】无监督学习的立体匹配方法(ICCV-2017)
泡泡机器人SLAM
8+阅读 · 2018年10月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员