For a hypergraph $H$, the transversal is a subset of vertices whose intersection with every edge is nonempty. The cardinality of a minimum transversal is the transversal number of $H$, denoted by $\tau(H)$. The Tuza constant $c_k$ is defined as $\sup{\tau(H)/ (m+n)}$, where $H$ ranges over all $k$-uniform hypergrpahs, with $m$ and $n$ begin the number of edges and vertices, respectively. We give upper and lower bounds on $c_k$, for $7\leq k\leq 17$.
翻译:对于高压(H)美元来说,横贯是每端连接非空的脊椎的子集。最低横贯的基点是跨端的美元(H)美元,用$\tau(H)表示。图扎常数$c_k$的定义是$\sup_Tau(H)/(m+n)美元,其中,美元范围大于所有千元-单倍超格尔帕,以美元和美元分别开始于边缘和顶点的数量。我们给7\leqk\leq 17美元以上下限为$c_k$。