A challenge for practitioners of Bayesian inference is specifying a model that incorporates multiple relevant, heterogeneous data sets. It may be easier to instead specify distinct submodels for each source of data, then join the submodels together. We consider chains of submodels, where submodels directly relate to their neighbours via common quantities which may be parameters or deterministic functions thereof. We propose chained Markov melding, an extension of Markov melding, a generic method to combine chains of submodels into a joint model. One challenge we address is appropriately capturing the prior dependence between common quantities within a submodel, whilst also reconciling differences in priors for the same common quantity between two adjacent submodels. Estimating the posterior of the resulting overall joint model is also challenging, so we describe a sampler that uses the chain structure to incorporate information contained in the submodels in multiple stages, possibly in parallel. We demonstrate our methodology using two examples. The first example considers an ecological integrated population model, where multiple data sets are required to accurately estimate population immigration and reproduction rates. We also consider a joint longitudinal and time-to-event model with uncertain, submodel-derived event times. Chained Markov melding is a conceptually appealing approach to integrating submodels in these settings.
翻译:贝叶斯推论的实践者所面临的一项挑战是说明一种包含多相关、多式数据集的模式; 比较容易地为每个数据来源指定不同的子模型,然后加入子模型; 我们考虑子模型链,其中子模型通过共同数量直接与其邻居相关,这些数量可能是参数或决定性功能; 我们建议采用链条式的Markov焊接法,即Markov焊接法的延伸,这是将子模型链并入一个联合模型的一种通用方法。 我们处理的一个挑战是适当捕捉子模型内共同数量之间先前的依赖性,同时调和两个相邻的子模型之间在共同数量上的差异。 估计由此形成的总体联合模型的表面和时间模型也是具有挑战性的,因此我们描述一个样品,利用链条结构将子模型中的信息纳入多个阶段,可能是平行的。 我们用两个例子展示了我们的方法。 我们的第一个例子是生态综合人口模型,其中需要多个数据集来准确估计人口移民和复制率。 我们还考虑在两个相邻的子模型中采用联合的长式和时订式模型,将这些模型纳入不确定的次模型。