In this paper, we study the statistical limits of deep learning techniques for solving elliptic partial differential equations (PDEs) from random samples using the Deep Ritz Method (DRM) and Physics-Informed Neural Networks (PINNs). To simplify the problem, we focus on a prototype elliptic PDE: the Schr\"odinger equation on a hypercube with zero Dirichlet boundary condition, which has wide application in the quantum-mechanical systems. We establish upper and lower bounds for both methods, which improves upon concurrently developed upper bounds for this problem via a fast rate generalization bound. We discover that the current Deep Ritz Methods is sub-optimal and propose a modified version of it. We also prove that PINN and the modified version of DRM can achieve minimax optimal bounds over Sobolev spaces. Empirically, following recent work which has shown that the deep model accuracy will improve with growing training sets according to a power law, we supply computational experiments to show a similar behavior of dimension dependent power law for deep PDE solvers.
翻译:在本文中,我们研究了利用深利兹法和物理进化神经网络(PINNs)随机抽样样本解决椭圆部分方程式(PDE)的深层学习技术的统计局限性。为了简化问题,我们侧重于一个原型的椭圆形PDE:Schr\'odinger 方程式,该方程式在量子机械系统中广泛应用。我们为这两种方法设定了上下界限,通过快速速率通用约束改进了同时开发的这一问题的上界。我们发现目前的深利兹法是次最佳的,并提出了修改版本。我们还证明PINN和DRM的修改版本可以在Sobolev空间上达到微量轴的最佳边框。在近期的工作显示,随着根据电源法不断增长的培训组合,深模型精确度将得到改善,我们提供计算实验,以显示深PDE解码的维维力法的类似行为。