We present a postprocessing layer for deformable image registration to make a registration field more diffeomorphic by encouraging Jacobians of the transformation to be positive. Diffeomorphic image registration is important for medical imaging studies because of the properties like invertibility, smoothness of the transformation, and topology preservation/non-folding of the grid. Violation of these properties can lead to destruction of the neighbourhood and the connectivity of anatomical structures during image registration. Most of the recent deep learning methods do not explicitly address this folding problem and try to solve it with a smoothness regularization on the registration field. In this paper, we propose a differentiable layer, which takes any registration field as its input, computes exponential of the Jacobian matrices of the input and reconstructs a new registration field from the exponentiated Jacobian matrices using Poisson reconstruction. Our proposed Poisson reconstruction loss enforces positive Jacobians for the final registration field. Thus, our method acts as a post-processing layer without any learnable parameters of its own and can be placed at the end of any deep learning pipeline to form an end-to-end learnable framework. We show the effectiveness of our proposed method for a popular deep learning registration method Voxelmorph and evaluate it with a dataset containing 3D brain MRI scans. Our results show that our post-processing can effectively decrease the number of non-positive Jacobians by a significant amount without any noticeable deterioration of the registration accuracy, thus making the registration field more diffeomorphic. Our code is available online at https://github.com/Soumyadeep-Pal/Diffeomorphic-Image-Registration-Postprocess.
翻译:我们展示了一个变形图像注册的后处理层,以便通过鼓励变异的雅各布人鼓励变异的雅各克体,使登记领域变得更为阴性; 变异性图像注册对于医学成像研究非常重要,因为其属性包括:可视性、变异的顺利性、以及电表保存/不翻版的电网。 破坏这些属性可能导致邻居被毁,图像登记期间解剖结构的连接性。 最近的深层次学习方法大多没有明确地解决这个折叠问题,而是试图以平稳的方式解决它。 在本文中,我们提出一个不同的层,将任何登记领域都作为输入,将输入的雅各布矩阵的快速化,并将一个新的登记领域从流行化的雅各布矩阵中重建。 我们提议的 Poisson 重建损失使得最终登记领域的正数的雅各布人得以成功。 因此,我们的方法可以作为后处理层,无需任何可了解的参数,而可以放在任何深层次学习管道的尾端,从而形成一个不甚深层的内脏的内脏的内脏内码注册。 我们用一个系统显示一个可读的内化的内存的内存数据记录。 我们的内存的内存的内存的内存方法, 显示一个有效的数据记录。