We present a logical system that combines the well-known classical epistemic concepts of belief and knowledge with a concept of evidence such that the intuitive principle \textit{`evidence yields belief and knowledge'} is satisfied. Our approach relies on previous works of the first author \cite{lewjlc2, lewigpl, lewapal} who introduced a modal system containing $S5$-style principles for the reasoning about intutionistic truth (i.e. \textit{proof}) and, inspired by \cite{artpro}, combined that system with concepts of \textit{intuitionistic} belief and knowledge. We consider that combined system and replace the constructive concept of \textit{proof} with a classical notion of \textit{evidence}. This results in a logic that combines modal system $S5$ with classical epistemic principles where $\square\varphi$ reads as `$\varphi$ is evident' in an epistemic sense. Inspired by \cite{lewapal}, and in contrast to the usual possible worlds semantics found in the literature, we propose here a relational, frame-based semantics where belief and knowledge are not modeled via accessibility relations but directly as sets of propositions (sets of sets of worlds).
翻译:abstract: 我们提出了一个逻辑系统,将已知的传统认识概念——信念和知识,与证据的概念结合起来,从而满足人们的直觉原则“证据支持信念和知识”的需要。我们的方法依赖于第一作者先前的工作\cite{lewjlc2,lewigpl,lewapal},该工作介绍了一个包含推理直觉真理(即证明)$S5$类型原理的模态系统,并受到\cite{artpro}的启发,将该系统与直觉信念和知识的概念结合了起来。我们考虑该组合系统,并用经典的证据概念代替了唯一的构造性概率。这样就得到了一个将模态$S5$系统与经典认识原理相结合的逻辑,其中$\square\varphi$在认识上的意义是“$\varphi$是明显的”。受\cite{lewapal}启发,与文献中通常的可能性世界语义相反,我们在这里提出了以关系为基础的语义,其中信念和知识不是通过可访问性关系而是直接作为命题(世界集合的集合)进行建模。