We study the approximability of the four-vertex model, a special case of the six-vertex model.We prove that, despite being NP-hard to approximate in the worst case, the four-vertex model admits a fully polynomial randomized approximation scheme (FPRAS) when the input satisfies certain linear equation system.The FPRAS is given by a Markov chain called the worm process whose state space and rapid mixing rely on the solution of the linear equation system.This is the first attempt to design an FPRAS for the six-vertex model with unwinable constraint functions.Furthermore, we consider the application of this technique on planar graphs to give efficient sampling algorithms.
翻译:我们研究了四高离子模型的近似性,这是六高离子模型的一个特例。 我们证明,尽管在最坏的情况下,四高离子模型很难接近,但当输入满足某些线性方程系统时,四高离子模型就承认了完全的多元随机近似方案。 FPRAS是由一个叫作蠕虫过程的Markov提供,其状态空间和快速混合取决于线性方程系统的解决办法。 这是第一次尝试为六高离子模型设计一个FPRAS,该模型具有不可战胜的制约功能。此外,我们考虑在平面图上应用这一技术来提供高效的抽样算法。