We present a framework for the theoretical analysis of ensembles of low-complexity empirical risk minimisers trained on independent random compressions of high-dimensional data. First we introduce a general distribution-dependent upper-bound on the excess risk, framed in terms of a natural notion of compressibility. This bound is independent of the dimension of the original data representation, and explains the in-built regularisation effect of the compressive approach. We then instantiate this general bound to classification and regression tasks, considering Johnson-Lindenstrauss mappings as the compression scheme. For each of these tasks, our strategy is to develop a tight upper bound on the compressibility function, and by doing so we discover distributional conditions of geometric nature under which the compressive algorithm attains minimax-optimal rates up to at most poly-logarithmic factors. In the case of compressive classification, this is achieved with a mild geometric margin condition along with a flexible moment condition that is significantly more general than the assumption of bounded domain. In the case of regression with strongly convex smooth loss functions we find that compressive regression is capable of exploiting spectral decay with near-optimal guarantees. In addition, a key ingredient for our central upper bound is a high probability uniform upper bound on the integrated deviation of dependent empirical processes, which may be of independent interest.


翻译:我们提出了一个理论分析框架,用于对低复杂度实证风险最低风险的集合进行理论分析,这些风险是受过独立随机压缩高维数据培训的。首先,我们引入了基于自然压缩概念的超风险一般分布依赖的上限,这一界限独立于原始数据代表面的维度,并解释了压缩方法的内在常规效应。然后,我们将这一总体与分类和回归任务连接起来,将约翰逊-伦登斯特拉斯映射作为压缩计划。对于其中每一项任务,我们的战略是发展一个紧凑的压缩功能的上限,通过这样做,我们发现一个基于地理测量性质的分布条件,在这个条件下,压缩算法达到最微缩和最佳的速率,直至大多数多度调节因素。在压缩分类方面,我们实现了这一平衡,同时有一个比约束域假设更普遍的灵活时间条件。对于这些任务来说,我们的战略是发展一个紧凑平稳损失功能的回归,而我们通过这样做,我们发现了一个地理测量特性的分布环境条件,在这个条件下,压缩算出一个最接近平稳的缩缩缩缩度,我们发现一个核心的缩缩缩缩缩成成比例的上,可以利用一个高的缩缩成等的缩缩成等的缩成等的缩成成等的缩成等。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
11+阅读 · 2019年4月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年7月25日
Arxiv
0+阅读 · 2021年7月23日
Arxiv
0+阅读 · 2021年7月22日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关VIP内容
专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
11+阅读 · 2019年4月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员