Low rank matrix recovery problems appear widely in statistics, combinatorics, and imaging. One celebrated method for solving these problems is to formulate and solve a semidefinite program (SDP). It is often known that the exact solution to the SDP with perfect data recovers the solution to the original low rank matrix recovery problem. It is more challenging to show that an approximate solution to the SDP formulated with noisy problem data acceptably solves the original problem; arguments are usually ad hoc for each problem setting, and can be complex. In this note, we identify a set of conditions that we call simplicity that limit the error due to noisy problem data or incomplete convergence. In this sense, simple SDPs are robust: simple SDPs can be (approximately) solved efficiently at scale; and the resulting approximate solutions, even with noisy data, can be trusted. Moreover, we show that simplicity holds generically, and also for many structured low rank matrix recovery problems, including the stochastic block model, $\mathbb{Z}_2$ synchronization, and matrix completion. Formally, we call an SDP simple if it has a surjective constraint map, admits a unique primal and dual solution pair, and satisfies strong duality and strict complementarity. However, simplicity is not a panacea: we show the Burer-Monteiro formulation of the SDP may have spurious second-order critical points, even for a simple SDP with a rank 1 solution.


翻译:低级别矩阵回收问题在统计、组合和成像中表现得非常广泛。 解决这些问题的一个值得庆幸的方法是制定和解决半无限期程序(SDP ) 。 人们通常知道, 精确地解决拥有完美数据的SDP 方案可以恢复原始低级别矩阵回收问题的解决方案。 更具有挑战性的是, 显示以吵闹问题数据拟订的对SDP的大致解决办法能够以可接受的吵闹问题数据解决原始问题; 论点通常对每个问题设置都是临时性的, 并且可能很复杂。 在本说明中, 我们确定了一系列简单的条件, 来限制由于吵闹的数据或不完整的趋同而导致的错误。 从这个意义上讲, 简单的 SDP 是强有力的: 简单的 SDP 能够( 大约) 以规模( 大约) 有效解决; 由此产生的近似的解决办法, 即使是以吵闹闹事的数据, 也能够令人信服地解决许多结构化的低级矩阵回收问题, 包括随机区块模型, $\mathbbb ⁇ 2$2$2$2$ 和矩阵完成。 。 正式说, 我们称之为SDP 简单简单的SDP, 如果它有一个具有隐性、 稳性、 和双重的简单性、 质质质质定的硬性、 和双质的SMMSMRMRDR 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
老铁,邀请你来免费学习人工智能!!!
量化投资与机器学习
4+阅读 · 2017年11月14日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
老铁,邀请你来免费学习人工智能!!!
量化投资与机器学习
4+阅读 · 2017年11月14日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员