Fitting parametric models by optimizing frequency domain objective functions is an attractive approach of parameter estimation in time series analysis. Whittle estimators are a prominent example in this context. Under weak conditions and the (realistic) assumption that the true spectral density of the underlying process does not necessarily belong to the parametric class of spectral densities fitted, the distribution of Whittle estimators typically depends on difficult to estimate characteristics of the underlying process. This makes the implementation of asymptotic results for the construction of confidence intervals or for assessing the variability of estimators, difficult in practice. This paper proposes a frequency domain bootstrap method to estimate the distribution of Whittle estimators which is asymptotically valid under assumptions that not only allow for (possible) model misspecification but also for weak dependence conditions which are satisfied by a wide range of stationary stochastic processes. Adaptions of the bootstrap procedure developed to incorporate different modifications of Whittle estimators proposed in the literature, like for instance, tapered, de-biased or boundary extended Whittle estimators, are also considered. Simulations demonstrate the capabilities of the bootstrap method proposed and its good finite sample performance. A real-life data analysis also is presented.


翻译:通过优化频域客观功能来适用参数模型,是时间序列分析中参数估计的一个有吸引力的方法。Whittle估计器是这方面的一个突出例子。在条件薄弱和(现实的)假设基础过程的真正光谱密度不一定属于安装的光谱密度的参数类别的情况下,Whittle估计器的分布通常取决于难以估计基础过程的特性。这就使得在构建信任间隔或评估估计器的变异性方面,实际中很难执行无症状结果。本文建议采用频率域测距仪的方法来估计Whittle估计器的分布,在假设中,这种测距不完全有效,不仅允许(可能)模型的误差,而且允许(可能)模型偏差的脆弱依赖性条件,而这种偏差的分布也取决于广泛的固定性测距过程的满意度。为纳入文献中提议的对Whittle估计器的不同修改而开发的测距程序,例如,胶带、断面或边界扩展的测距测距器的变异性。本文建议采用一种频率测距测距仪,同时还认为其模拟模型和测度分析的精确性。

0
下载
关闭预览

相关内容

专知会员服务
27+阅读 · 2021年7月3日
专知会员服务
81+阅读 · 2021年5月10日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Entropic estimation of optimal transport maps
Arxiv
0+阅读 · 2021年9月24日
Arxiv
3+阅读 · 2018年10月18日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
专知会员服务
27+阅读 · 2021年7月3日
专知会员服务
81+阅读 · 2021年5月10日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员