Public blockchains implement a fee mechanism to allocate scarce computational resources across competing transactions. Most existing fee market designs utilize a joint, fungible unit of account (e.g., gas in Ethereum) to price otherwise non-fungible resources such as bandwidth, computation, and storage, by hardcoding their relative prices. Fixing the relative price of each resource in this way inhibits granular price discovery, limiting scalability and opening up the possibility of denial-of-service attacks. As a result, many prominent networks such as Ethereum and Solana have proposed multi-dimensional fee markets. In this paper, we provide a principled way to design fee markets that efficiently price multiple non-fungible resources. Starting from a loss function specified by the network designer, we show how to compute dynamic prices that align the network's incentives (to minimize the loss) with those of the users and miners (to maximize their welfare), even as demand for these resources changes. Our pricing mechanism follows from a natural decomposition of the network designer's problem into two parts that are related to each other via the resource prices. These results can be used to efficiently set fees in order to improve network performance.


翻译:公共链条实施收费机制,在相互竞争的交易中分配稀缺的计算资源。 多数现有的收费市场设计使用一个联合、可互换的记账单位(例如Etherom中的天然气),通过硬编码其相对价格,对带宽、计算和储存等非可互换的资源定价。 以这种方式固定每种资源的相对价格抑制颗粒价格的发现,限制可缩放性,并开启拒绝服务攻击的可能性。 因此,许多著名的网络,如Ethereum和Sarana, 都提出了多维收费市场。 在本文中,我们提供了一个原则性方法,设计高效定价多种不可互换资源的收费市场。 从网络设计者规定的损失函数开始,我们展示如何将动态价格与网络激励(最大限度地减少损失)与用户和矿工的激励(最大限度地提高他们的福利)相匹配,即使对这些资源的需求有所改变。 我们的定价机制源自网络设计者的问题自然分解成两个通过资源价格相互相关的部分。 这些结果可以被高效地用于提高网络绩效。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
52+阅读 · 2020年9月7日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员