The scalability problem has been one of the most significant barriers limiting the adoption of blockchains. Blockchain sharding is a promising approach to this problem. However, the sharding mechanism introduces a significant number of cross-shard transactions, which are expensive to process. This paper focuses on the transaction allocation problem to reduce the number of cross-shard transactions for better scalability. In particular, we systematically formulate the transaction allocation problem and convert it to the community detection problem on a graph. A deterministic and fast allocation scheme TxAllo is proposed to dynamically infer the allocation of accounts and their associated transactions. It directly optimizes the system throughput, considering both the number of cross-shard transactions and the workload balance among shards. We evaluate the performance of TxAllo on an Ethereum dataset containing over 91 million transactions. Our evaluation results show that for a blockchain with 60 shards, TxAllo reduces the cross-shard transaction ratio from 98% (by using traditional hash-based allocation) to about 12%. In the meantime, the workload balance is well maintained. Compared with other methods, the execution time of TxAllo is almost negligible. For example, when updating the allocation every hour, the execution of TxAllo only takes 0.5 seconds on average, whereas other concurrent works, such as BrokerChain (INFOCOM'22) leveraging the classic METIS method, require 422 seconds.
翻译:缩放问题一直是限制采用块链的最重大障碍之一。 块块分割法是解决这一问题的一个很有希望的方法。 但是, 块分割机制引入了大量跨碎交易, 处理费用昂贵。 本文侧重于交易分配问题, 以减少跨硬交易的数量, 以便更便于调整。 特别是, 我们系统地制定交易分配问题, 并将它转换成图表上的社区检测问题。 提议动态推算账户分配及其相关交易的确定性和快速分配方案TxAllo。 它直接优化系统吞吐量, 同时考虑到交叉硬交易的数量和碎屑之间的工作量平衡。 我们评估交易分配问题, 以减少跨硬交易的数量, 以更好地调整。 我们的评估结果显示, 对于一个有60块的块, TxAllo, 将跨硬交易比率从98 % (使用传统的基于散列的分配) 降低到大约12 % 。 与此同时, 工作量平衡得到了很好的保持, 考虑到跨硬盘交易数量交易的数量和两重交易之间的工作量平衡。 我们评估Tx Allo在包含9100多万交易的EO平均计算方法中的业绩, 。 将每10分钟的计算, 。