This letter investigates a cache-enabled multiuser mobile edge computing (MEC) system with dynamic task arrivals, taking into account the impact of proactive cache placement on the system's overall energy consumption. We consider that an access point (AP) schedules a wireless device (WD) to offload computational tasks while executing the tasks of a finite library in the \emph{task caching} phase, such that the nearby WDs with the same task request arriving later can directly download the task results in the \emph{task arrival and execution} phase. We aim for minimizing the system's weighted-sum energy over a finite-time horizon, by jointly optimizing the task caching decision and the MEC execution of the AP, and local computing as well as task offloading of the WDs at each time slot, subject to caching capacity, task causality, and completion deadline constraints. The formulated design problem is a mixed-integer nonlinear program. Under the assumption of fully predicable task arrivals, we first propose a branch-and-bound (BnB) based method to obtain the optimal offline solution. Next, we propose two low-complexity schemes based on convex relaxation and task-popularity, respectively. Finally, numerical results show the benefit of the proposed schemes over existing benchmark schemes.
翻译:本信调查一个缓存型多用户移动边缘计算(MEC)系统,它具有动态任务,同时考虑到主动缓冲定位对系统总体能源消耗的影响。我们认为,一个接入点(AP)安排一个无线装置(WD)来卸载计算任务,同时执行位于 emph{task chaching} 阶段的有限图书馆的任务,以便有同样任务请求的附近残疾人能够稍后抵达,直接下载任务到达和执行阶段的工作结果。我们的目标是通过联合优化任务缓冲决定和MEC执行AP以及当地计算和任务,在每一个时段卸载WD,但取决于缓存能力、任务因果关系和完成期限的限制。拟定的设计问题是混合的非线性程序。在假定完全可预见的任务到达和执行阶段,我们首先提出一个基于一定时间的分流(BnB)系统加权总能量,以获得最佳离线解决方案。我们提出了两项基于最佳离线解决方案的软化方案,即分别显示基于现有基准目标的软化计划。我们提出了两项基于当前基准的软化计划。