This letter investigates a cache-enabled multiuser mobile edge computing (MEC) system with dynamic task arrivals, taking into account the impact of proactive cache placement on the system's overall energy consumption. We consider that an access point (AP) schedules a wireless device (WD) to offload computational tasks while executing the tasks of a finite library in the \emph{task caching} phase, such that the nearby WDs with the same task request arriving later can directly download the task results in the \emph{task arrival and execution} phase. We aim for minimizing the system's weighted-sum energy over a finite-time horizon, by jointly optimizing the task caching decision and the MEC execution of the AP, and local computing as well as task offloading of the WDs at each time slot, subject to caching capacity, task causality, and completion deadline constraints. The formulated design problem is a mixed-integer nonlinear program. Under the assumption of fully predicable task arrivals, we first propose a branch-and-bound (BnB) based method to obtain the optimal offline solution. Next, we propose two low-complexity schemes based on convex relaxation and task-popularity, respectively. Finally, numerical results show the benefit of the proposed schemes over existing benchmark schemes.


翻译:本信调查一个缓存型多用户移动边缘计算(MEC)系统,它具有动态任务,同时考虑到主动缓冲定位对系统总体能源消耗的影响。我们认为,一个接入点(AP)安排一个无线装置(WD)来卸载计算任务,同时执行位于 emph{task chaching} 阶段的有限图书馆的任务,以便有同样任务请求的附近残疾人能够稍后抵达,直接下载任务到达和执行阶段的工作结果。我们的目标是通过联合优化任务缓冲决定和MEC执行AP以及当地计算和任务,在每一个时段卸载WD,但取决于缓存能力、任务因果关系和完成期限的限制。拟定的设计问题是混合的非线性程序。在假定完全可预见的任务到达和执行阶段,我们首先提出一个基于一定时间的分流(BnB)系统加权总能量,以获得最佳离线解决方案。我们提出了两项基于最佳离线解决方案的软化方案,即分别显示基于现有基准目标的软化计划。我们提出了两项基于当前基准的软化计划。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
专知会员服务
39+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月23日
Arxiv
0+阅读 · 2023年3月23日
Arxiv
35+阅读 · 2019年11月7日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员