Domain adaptation of 3D portraits has gained more and more attention. However, the transfer mechanism of existing methods is mainly based on vision or language, which ignores the potential of vision-language combined guidance. In this paper, we propose a vision-language coupled 3D portraits domain adaptation framework, namely Image and Text portrait (ITportrait). ITportrait relies on a two-stage alternating training strategy. In the first stage, we employ a 3D Artistic Paired Transfer (APT) method for image-guided style transfer. APT constructs paired photo-realistic portraits to obtain accurate artistic poses, which helps ITportrait to achieve high-quality 3D style transfer. In the second stage, we propose a 3D Image-Text Embedding (ITE) approach in the CLIP space. ITE uses a threshold function to adaptively control the optimization direction of image or text in the CLIP space. Comprehensive quantitative and qualitative results show that our ITportrait achieves state-of-the-art (SOTA) results and benefits downstream tasks. All source codes and pre-trained models will be released to the public.


翻译:3D肖像的领域自适应越来越受到关注。然而,现有方法的转移机制主要基于视觉或语言,忽略了视觉-语言结合引导的潜力。在本文中,我们提出了一种视觉-语言耦合的3D肖像领域自适应框架,即图像-文本肖像(ITportrait)。ITportrait依赖于两阶段交替训练策略。在第一阶段,我们采用3D艺术配对转换(APT)方法进行图像引导风格转移。APT构建配对的逼真肖像,以获得准确的艺术造型,有利于ITportrait实现高质量的3D风格转移。在第二阶段,我们提出了一种基于CLIP空间的3D图像-文本嵌入(ITE)方法。ITE使用阈值函数来自适应地控制CLIP空间中图像或文本的优化方向。综合定量和定性结果表明,我们的ITportrait实现了最先进的结果并有助于下游任务。所有源代码和预训练模型将发布给公众。

0
下载
关闭预览

相关内容

领域自适应是与机器学习和转移学习相关的领域。 当我们的目标是从源数据分布中学习在不同(但相关)的目标数据分布上的良好性能模型时,就会出现这种情况。 例如,常见垃圾邮件过滤问题的任务之一在于使模型从一个用户(源分发)适应到接收显着不同的电子邮件(目标分发)的新模型。 注意,当有多个源分发可用时,该问题被称为多源域自适应。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
50+阅读 · 2022年10月2日
Nature子刊:尝试利用多模态基础模型迈向通用人工智能
专知会员服务
46+阅读 · 2022年6月16日
 【SIGGRAPH 2020】人像阴影处理,Portrait Shadow Manipulation
专知会员服务
29+阅读 · 2020年5月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
13+阅读 · 2021年3月29日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员