In recent work, we proposed a distributed Picard iteration (DPI) that allows a set of agents, linked by a communication network, to find a fixed point of a locally contractive (LC) map that is the average of individual maps held by said agents. In this work, we build upon the DPI and its local linear convergence (LLC) guarantees to make several contributions. We show that Sanger's algorithm for principal component analysis (PCA) corresponds to the iteration of an LC map that can be written as the average of local maps, each map known to each agent holding a subset of the data. Similarly, we show that a variant of the expectation-maximization (EM) algorithm for parameter estimation from noisy and faulty measurements in a sensor network can be written as the iteration of an LC map that is the average of local maps, each available at just one node. Consequently, via the DPI, we derive two distributed algorithms - distributed EM and distributed PCA - whose LLC guarantees follow from those that we proved for the DPI. The verification of the LC condition for EM is challenging, as the underlying operator depends on random samples, thus the LC condition is of probabilistic nature.
翻译:在最近的工作中,我们提出了一个分布式 Picard 迭代(DPI), 使一组由通信网络连接起来的代理商能够找到当地合同(LC)地图的固定点,即上述代理商持有的个人地图的平均数。 在这项工作中,我们以DPI及其地方线性趋同(LLC)保证提供若干贡献为基础,在DPI及其地方线性趋同(LLLC)保证提供若干贡献。我们显示,Sanger的主要部件分析算法(PCA)与LC地图的迭代相对应,LC地图可以作为当地地图的平均数写成,每张地图的平均数是持有数据子集的每个代理商所知道的地图。同样,我们显示,对于传感器网络中噪音和差错测量参数估计的预期-最大值算法的变式可以写成LC地图的代号,该地图的平均数是本地地图的平均数,每张均在一个节点上。 因此,我们通过新闻部,我们从为DPI所证明的地图中得出了两种分布式算法——分发的EM和分布式五氯苯——其保证与我们所证明的一样。对LC条件进行核查是挑战性的,因为EMC的基本操作者取决于随机的样品。