We consider a discrete system of $n$ simple indistinguishable devices, called \emph{agents}, forming a \emph{connected} shape $S_I$ on a two-dimensional square grid. Agents are equipped with a linear-strength mechanism, called a \emph{line move}, by which an agent can push a whole line of consecutive agents in one of the four directions in a single time-step. We study the problem of transforming an initial shape $S_I$ into a given target shape $S_F$ via a finite sequence of line moves in a distributed model, where each agent can observe the states of nearby agents in a Moore neighbourhood. Our main contribution is the first distributed connectivity-preserving transformation that exploits line moves within a total of $O(n \log_2 n)$ moves, which is asymptotically equivalent to that of the best-known centralised transformations. The algorithm solves the \emph{line formation problem} that allows agents to form a final straight line $S_L$, starting from any shape $ S_I $, whose \emph{associated graph} contains a Hamiltonian path.
翻译:我们考虑的是一个离散的系统,由$n简单不区分的设备组成,称为 emph{ 试剂},在二维平方格上形成一个 emph{ 连接} 形状为$S_ I$。 代理器配备了一个线性强度机制, 称为 emph{ 线性移动}, 通过这个系统, 一个代理器可以在一个单一的时间步骤中将四个方向中的一个方向的一整串连续剂推向一个方向。 我们研究将一个初始形状 $S_ I$ 转换成一个特定目标形状 $S_ F$ 的问题, 通过一个分布式的线性移动的有限序列, 每个代理器都可以在摩尔附近的一个区域观察 $S_ L$ 。 我们的主要贡献是第一个分布式的连接- 保留性转换, 利用线在总共$O( n) log_ 2 n) 移动中移动, 它与最著名的中央化变形的变形一样。 算出一个问题 = em{line 问题 使代理器可以形成最后直线 $_ L$, 从任何形状的S_ remainstal_ makemas a gremas。