We present a scalable strategy for development of mesh-free hybrid neuro-symbolic partial differential equation solvers based on existing mesh-based numerical discretization methods. Particularly, this strategy can be used to efficiently train neural network surrogate models for the solution functions and operators of partial differential equations while retaining the accuracy and convergence properties of the state-of-the-art numerical solvers. The presented neural bootstrapping method (hereby dubbed NBM) is based on evaluation of the finite discretization residuals of the PDE system obtained on implicit Cartesian cells centered on a set of random collocation points with respect to trainable parameters of the neural network. We apply NBM to the important class of elliptic problems with jump conditions across irregular interfaces in three spatial dimensions. We show the method is convergent such that model accuracy improves by increasing number of collocation points in the domain. The algorithms presented here are implemented and released in a software package named JAX-DIPS (https://github.com/JAX-DIPS/JAX-DIPS), standing for differentiable interfacial PDE solver. JAX-DIPS is purely developed in JAX, offering end-to-end differentiability from mesh generation to the higher level discretization abstractions, geometric integrations, and interpolations, thus facilitating research into use of differentiable algorithms for developing hybrid PDE solvers.
翻译:我们提出了一个基于现有网状数字分解方法开发无网状混合神经-共振片面部分偏差方程式的可扩展战略。特别是,这一战略可用于高效地培训神经网络替代模型,用于解决方案功能的替代模型和部分差异方程式操作者,同时保留最先进的数字求解器的准确性和趋同性。提出的神经靴式方法(代之以代之名NBM)基于对在隐含的碳酸盐细胞中获取的PDE系统的有限离散剩余部分的评估,这些细胞以一组随机合用点为中心,与神经网络的可训练参数有关。我们可将NBM用于重要类的螺旋网络替代模型,在三个空间层面有不规则界面的跳跃出条件。我们展示了这种方法的趋同性,通过增加域内共位点的数量来提高模型的准确性。这里介绍的算法是在一个名为PAX-DIS(https://github.com/JAX-DIPS/JAX-DI-DIPS-DIPIS)的软件包中实施并发布,用于可进行不同研究的Geximal-deal-deal-DIS-deal-deal-degrational-deal-degradustration),并存的JAx-deal-deal-demental-demental-demental-deal-deal-demental-deal-demental-demental-demental-demental-demental-demental-demental-dementaliz-demental-demental-demental-demental-demental-demental-demental-demental-demental-demental-demental-demental-demental-deal-deal-de-demental-deal-de-de-de-de-demental-demental-demental-demental-demental-demental-demental-demental-demental-demental-demental-demental-demental-deal-deal-demental-deal-deal-de-demental-demental-demental-de