Appearance-based gaze estimation systems have shown great progress recently, yet the performance of these techniques depend on the datasets used for training. Most of the existing gaze estimation datasets setup in interactive settings were recorded in laboratory conditions and those recorded in the wild conditions display limited head pose and illumination variations. Further, we observed little attention so far towards precision evaluations of existing gaze estimation approaches. In this work, we present a large gaze estimation dataset, PARKS-Gaze, with wider head pose and illumination variation and with multiple samples for a single Point of Gaze (PoG). The dataset contains 974 minutes of data from 28 participants with a head pose range of 60 degrees in both yaw and pitch directions. Our within-dataset and cross-dataset evaluations and precision evaluations indicate that the proposed dataset is more challenging and enable models to generalize on unseen participants better than the existing in-the-wild datasets. The project page can be accessed here: https://github.com/lrdmurthy/PARKS-Gaze
翻译:以视觉为基础的视觉估计系统最近取得了巨大进展,但这些技术的性能取决于用于培训的数据集,在互动环境中现有的视觉估计数据集大多记录在实验室条件下,野生条件下记录的数据显示头部和光度的变化有限。此外,我们注意到,迄今为止对现有视觉估计方法的精确评价没有多少注意。在这项工作中,我们提出了一个大型的视觉估计数据集,PARGS-Gaze,其头部面部和光度变化范围更广,以及一个单一的Gaze(PoG)的多个样本。该数据集包含来自28名参与者的974分钟数据,其头部布局范围在 ⁇ 线和投球方向上为60度。我们的内部数据集和交叉数据集的评价和精确评价表明,拟议的数据集比Wild数据集更具有挑战性,并使模型能够更好地对看不见的参与者进行概括。项目网页可以访问:https://github.com/ldmurthy/PARKS-Gaze。