Designing Conversational AI systems to support older adults requires these systems to explain their behavior in ways that align with older adults' preferences and context. While prior work has emphasized the importance of AI explainability in building user trust, relatively little is known about older adults' requirements and perceptions of AI-generated explanations. To address this gap, we conducted an exploratory Speed Dating study with 23 older adults to understand their responses to contextually grounded AI explanations. Our findings reveal the highly context-dependent nature of explanations, shaped by conversational cues such as the content, tone, and framing of explanation. We also found that explanations are often interpreted as interactive, multi-turn conversational exchanges with the AI, and can be helpful in calibrating urgency, guiding actionability, and providing insights into older adults' daily lives for their family members. We conclude by discussing implications for designing context-sensitive and personalized explanations in Conversational AI systems.
翻译:暂无翻译