This study aims to identify chicken eggs fertility using the support vector machine (SVM) classifier method. The classification basis used the first-order statistical (FOS) parameters as feature extraction in the identification process. This research was developed based on the process's identification process, which is still manual (conventional). Although currently there are many technologies in the identification process, they still need development. Thus, this research is one of the developments in the field of image processing technology. The sample data uses datasets from previous studies with a total of 100 egg images. The egg object in the image is a single object. From these data, the classification of each fertile and infertile egg is 50 image data. Chicken egg image data became input in image processing, with the initial process is segmentation. This initial segmentation aims to get the cropped image according to the object. The cropped image is repaired using image preprocessing with grayscaling and image enhancement methods. This method (image enhancement) used two combination methods: contrast limited adaptive histogram equalization (CLAHE) and histogram equalization (HE). The improved image becomes the input for feature extraction using the FOS method. The FOS uses five parameters, namely mean, entropy, variance, skewness, and kurtosis. The five parameters entered into the SVM classifier method to identify the fertility of chicken eggs. The results of these experiments, the method proposed in the identification process has a success percentage of 84.57%. Thus, the implementation of this method can be used as a reference for future research improvements. In addition, it may be possible to use a second-order feature extraction method to improve its accuracy and improve supervised learning for classification.
翻译:此项研究的目的是利用支持矢量机(SVM)分类法确定鸡蛋的肥力。 分类基础将第一级统计参数(FOS)用作身份鉴定过程中的特征提取。 此项研究是根据该过程的识别过程开发的, 该过程仍然是手工( 常规) 。 虽然目前识别过程有许多技术, 但仍需要开发。 此研究是图像处理技术领域的一项发展。 样本数据使用了先前研究的数据集, 共100个蛋图象。 图像中的蛋对象是一个单一对象。 根据这些数据, 每种肥料和肥蛋的精度分类为50个图像数据。 鸡蛋图像数据在图像处理过程中成为输入输入, 最初的分解过程仍然是手工加工过程( 常规分析过程) 。 裁剪裁图像是使用图像预处理法, 灰度缩放和图像增强方法。 这种方法( 放大) 使用了两种组合方法: 对比有限的适应性直方图均匀( CLACHE) 和直方图均匀( HEH) 。 通过这些数据, 改进图像的参考文献, 将精度转换成用于图像提取精度的精度提取过程的精度,,, 将SMA- 的精度的精度的精度的精度的精度的精度的精度的精度分析方法,, 方法是用于SMA的精度分析方法的精度的精度的精度的精度的精度的精度分析方法。