Much of the recent efforts on salient object detection (SOD) have been devoted to producing accurate saliency maps without being aware of their instance labels. To this end, we propose a new pipeline for end-to-end salient instance segmentation (SIS) that predicts a class-agnostic mask for each detected salient instance. To better use the rich feature hierarchies in deep networks and enhance the side predictions, we propose the regularized dense connections, which attentively promote informative features and suppress non-informative ones from all feature pyramids. A novel multi-level RoIAlign based decoder is introduced to adaptively aggregate multi-level features for better mask predictions. Such strategies can be well-encapsulated into the Mask R-CNN pipeline. Extensive experiments on popular benchmarks demonstrate that our design significantly outperforms existing \sArt competitors by 6.3\% (58.6\% vs. 52.3\%) in terms of the AP metric.The code is available at https://github.com/yuhuan-wu/RDPNet.
翻译:最近许多关于显要物体探测(SOD)的工作都致力于制作准确的显要地图,而没有注意到它们的特征标签。为此目的,我们提议为终端到终端突出区划(SIS)提供一条新的管道,预测每个探测到的显要实例有一个等级的不可知面罩。为了更好地利用深网络中丰富的特征等级,并增强侧面预测,我们提议建立正规化的密集连接,这种连接会认真促进信息特征,并抑制所有特征金字塔上的非信息性连接。在适应性综合的多层次功能中引入了一个新的基于 RoIALign 的解码器,以更好地进行掩码预测。这些战略可以被充分纳入Mack R-CNN 管道。关于流行基准的广泛实验表明,我们的设计大大超越了AP 指标中现有的艺术竞争者,即6.3 ⁇ (58.6 ⁇ vs.52.3 ⁇ )。该代码可在https://github.com/yuhuan-wu/RDPNet上查阅。