We present a novel staggered semi-implicit hybrid FV/FE method for the numerical solution of the shallow water equations at all Froude numbers on unstructured meshes. A semi-discretization in time of the conservative Saint-Venant equations with bottom friction terms leads to its decomposition into a first order hyperbolic subsystem containing the nonlinear convective term and a second order wave equation for the pressure. For the spatial discretization of the free surface elevation an unstructured mesh of triangular simplex elements is considered, whereas a dual grid of the edge-type is employed for the computation of the depth-averaged momentum vector. The first stage of the proposed algorithm consists in the solution of the nonlinear convective subsystem using an explicit Godunov-type FV method on the staggered grid. Next, a classical continuous FE scheme provides the free surface elevation at the vertex of the primal mesh. The semi-implicit strategy followed circumvents the contribution of the surface wave celerity to the CFL-type time step restriction making the proposed algorithm well-suited for low Froude number flows. The conservative formulation of the governing equations also allows the discretization of high Froude number flows with shock waves. As such, the new hybrid FV/FE scheme is able to deal simultaneously with both, subcritical as well as supercritical flows. Besides, the algorithm is well balanced by construction. The accuracy of the overall methodology is studied numerically and the C-property is proven theoretically and validated via numerical experiments. The solution of several Riemann problems attests the robustness of the new method to deal also with flows containing bores and discontinuities. Finally, a 3D dam break problem over a dry bottom is studied and our numerical results are successfully compared with numerical reference solutions and experimental data.


翻译:我们提出了一个新颖的半隐形混合FV/FE 方法,用于在非结构化的 meshe 中以所有 Froupde 数字解析浅水方程式的数值。 在保守的Saint-Venant 公式和底摩擦条件时,半分化导致其分解为第一个命令的双曲子子子系统,其中包含非线性对流术语和压力的第二个顺序波方程式。对于自由表面高度的空间分解而言,考虑一个没有结构的三角简单x元素网格,而在计算深度平均动力矢量时,则使用边缘型的双重网格。提议的算法的第一阶段是非线性对流,在交错的电网格上,使用明确的Godunov-型FVFV 方法,将它分解为第一组双向的双向双向双向双向双向的双向流。 典型的直径向加速流(clFlFlickral) 和直流的直流是新的直流, 和直流的直流的直流和直流的直流的直流的直流的直流 。 和直流的直流的直流 和直流的直流的直流 和直流的直流的直流 和直流的直流的直方的直方的直方的直流 和直方的直方的直流 和直流 和直方 。 和直方 。 。 和直方的计算法的计算法的计算法的流 的流 和 和直方的流 的流 的 和直方的 的 的流 和直方的 的 的 和直方的右的 的 的 的 和 的 的 的 的 的 的 的 的 和 和 的 的 和直方的右的 的 的 的 的 的 和直方的 和直方的 和直方的 和直方的 和直方的 和直方的 和直方的 的 和直方的 的 和直方的 的 的 的 的 的 的 的 的 和直方的

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
86+阅读 · 2021年12月9日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月14日
Arxiv
23+阅读 · 2022年2月4日
VIP会员
相关VIP内容
【硬核书】矩阵代数基础,248页pdf
专知会员服务
86+阅读 · 2021年12月9日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员