This paper introduces novel bulk-surface splitting schemes of first and second order for the wave equation with kinetic and acoustic boundary conditions of semi-linear type. For kinetic boundary conditions, we propose a reinterpretation of the system equations as a coupled system. This means that the bulk and surface dynamics are modeled separately and connected through a coupling constraint. This allows the implementation of splitting schemes, which show first-order convergence in numerical experiments. On the other hand, acoustic boundary conditions naturally separate bulk and surface dynamics. Here, Lie and Strang splitting schemes reach first- and second-order convergence, respectively, as we reveal numerically.
翻译:本文介绍了波形方程式的新型散状地表分解方案,其第一和第二顺序为半线型动能和声学边界条件。关于动能边界条件,我们提议将系统方程式重新解释为一个组合系统。这意味着散量和表面动态是分开建模的,通过混合制约连接起来。这可以实施分解方案,显示数字实验中第一和第二顺序的趋同。另一方面,声波边界条件自然是分开的散量和地表动态。在这里,Lie和Strang分解方案分别达到一和第二顺序的趋同,正如我们从数字上显示的那样。</s>