We propose a statistical framework to integrate radiological magnetic resonance imaging (MRI) and genomic data to identify the underlying radiogenomic associations in lower grade gliomas (LGG). We devise a novel imaging phenotype by dividing the tumor region into concentric spherical layers that mimics the tumor evolution process. MRI data within each layer is represented by voxel--intensity-based probability density functions which capture the complete information about tumor heterogeneity. Under a Riemannian-geometric framework these densities are mapped to a vector of principal component scores which act as imaging phenotypes. Subsequently, we build Bayesian variable selection models for each layer with the imaging phenotypes as the response and the genomic markers as predictors. Our novel hierarchical prior formulation incorporates the interior-to-exterior structure of the layers, and the correlation between the genomic markers. We employ a computationally-efficient Expectation--Maximization-based strategy for estimation. Simulation studies demonstrate the superior performance of our approach compared to other approaches. With a focus on the cancer driver genes in LGG, we discuss some biologically relevant findings. Genes implicated with survival and oncogenesis are identified as being associated with the spherical layers, which could potentially serve as early-stage diagnostic markers for disease monitoring, prior to routine invasive approaches.


翻译:我们提出一个统计框架,以整合放射性磁共振成像(MRI)和基因组数据,从而确定低年级微镜(LGG)中基本的放射基因学协会(LGG)。我们设计了一个新型成象成像成像成像型,将肿瘤区域分为类似肿瘤进化过程的同心球层。每个层内的磁成像数据由基于毒气-密度的概率密度功能代表,以捕捉肿瘤异异质性完整信息。在Riemannian-地基测量框架内,这些密度被映射到一个主要成份矢量的矢量中,该成像成像成像成型型成像成像成像成像成像成像型,每个层的基因标记作为预测器。我们的新前的等级配方包括层的内外部结构,以及基因标记之间的关联性关系。我们采用一种计算高效的预期-最大化战略来估算这些密度。模拟研究显示我们的方法与其他层的常规成型相较优性。随后我们用成像成像成像成型的变基因学作为预测的先期研究重点,我们讨论基因成型研究的基因的基因变变变基因的基因的基因,作为先导的基因学研究的结果。

0
下载
关闭预览

相关内容

专知会员服务
91+阅读 · 2021年6月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
145+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
187+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
8+阅读 · 2018年12月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年8月19日
Arxiv
0+阅读 · 2021年8月19日
Arxiv
13+阅读 · 2019年11月14日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
8+阅读 · 2018年12月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员