Compared to visible-to-visible (V2V) person re-identification (ReID), the visible-to-infrared (V2I) person ReID task is more challenging due to the lack of sufficient training samples and the large cross-modality discrepancy. To this end, we propose Flow2Flow, a unified framework that could jointly achieve training sample expansion and cross-modality image generation for V2I person ReID. Specifically, Flow2Flow learns bijective transformations from both the visible image domain and the infrared domain to a shared isotropic Gaussian domain with an invertible visible flow-based generator and an infrared one, respectively. With Flow2Flow, we are able to generate pseudo training samples by the transformation from latent Gaussian noises to visible or infrared images, and generate cross-modality images by transformations from existing-modality images to latent Gaussian noises to missing-modality images. For the purpose of identity alignment and modality alignment of generated images, we develop adversarial training strategies to train Flow2Flow. Specifically, we design an image encoder and a modality discriminator for each modality. The image encoder encourages the generated images to be similar to real images of the same identity via identity adversarial training, and the modality discriminator makes the generated images modal-indistinguishable from real images via modality adversarial training. Experimental results on SYSU-MM01 and RegDB demonstrate that both training sample expansion and cross-modality image generation can significantly improve V2I ReID accuracy.
翻译:与可见到可见( V2V) 人重新识别( ReID) 相比, 可见到红外( V2I) 人 ReID 任务更具有挑战性, 原因是缺乏足够的培训样本和巨大的跨模式差异。 为此, 我们提出 Flow2Flow2Flow, 这个统一框架可以共同实现V2I 人 ReID的培训样本扩展和跨模式图像生成。 具体地说, Flow2Flow2Flow可以学习从可见的图像域和红外域到共享的等式高斯域的双向双向转换, 以及一个不可撤销的流基( V2I) 图像生成和红外一。 有了 Flook2 Flor, 我们就可以生成假培训样本,从潜高斯噪音转换到可见或红外图像, 通过现有模式将高斯图像转换到隐含的图像生成。 为了身份调整和模式对生成的图像进行对比培训, 我们设计了一个模拟模式, 将真实的图像转换成一个真实的模型, 模拟培训模式, 将驱动成一个模拟的图像转换成一个真实的模型。