We analyse an energy minimisation problem recently proposed for modelling smectic-A liquid crystals. The optimality conditions give a coupled nonlinear system of partial differential equations, with a second-order equation for the tensor-valued nematic order parameter $\mathbf{Q}$ and a fourth-order equation for the scalar-valued smectic density variation $u$. Our two main results are a proof of the existence of solutions to the minimisation problem, and the derivation of a priori error estimates for its discretisation using the $\mathcal{C}^0$ interior penalty method. More specifically, optimal rates in the $H^1$ and $L^2$ norms are obtained for $\mathbf{Q}$, while optimal rates in a mesh-dependent norm and $L^2$ norm are obtained for $u$. Numerical experiments confirm the rates of convergence.
翻译:我们分析了最近为模拟光学-A液晶体而提议的一个能源最小化问题。 最佳性条件提供了一种非线性局部差分方程式的结合非线性系统, 以及高价微值线性定单参数的二阶方程式$\ mathbf ⁇ $和四阶方程式的cal- 估量性密度变化的四阶方程式$ u美元。 我们的两个主要结果证明有解决最小化问题的办法存在, 以及利用$\mathcal{C ⁇ 0$的内部惩罚法得出了离散的先验误估计数。 更具体地说, $H1$和$L2$标准的最佳比率是按美元计算, 而以网状值为依存的规范的最佳比率和以美元为单位的0.2美元标准是按美元计算的最佳比率。 数字实验证实了趋同率。