We initiate the study of property testing problems concerning relations between permutations. In such problems, the input is a tuple $(\sigma_1,\dotsc,\sigma_d)$ of permutations on $\{1,\dotsc,n\}$, and one wishes to determine whether this tuple satisfies a certain system of relations $E$, or is far from every tuple that satisfies $E$. If this computational problem can be solved by querying only a small number of entries of the given permutations, we say that $E$ is testable. For example, when $d=2$ and $E$ consists of the single relation $\mathsf{XY=YX}$, this corresponds to testing whether $\sigma_1\sigma_2=\sigma_2\sigma_1$, where $\sigma_1\sigma_2$ and $\sigma_2\sigma_1$ denote composition of permutations. We define a collection of graphs, naturally associated with the system $E$, that encodes all the information relevant to the testability of $E$. We then prove two theorems that provide criteria for testability and non-testability in terms of expansion properties of these graphs. By virtue of a deep connection with group theory, both theorems are applicable to wide classes of systems of relations. In addition, we formulate the well-studied group-theoretic notion of stability in permutations as a special case of the testability notion above, interpret all previous works on stability as testability results, survey previous results on stability from a computational perspective, and describe many directions for future research on stability and testability.


翻译:我们开始研究与变异关系有关的属性测试问题。 在这类问题中, 输入是$1,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
论文浅尝 |「知识表示学习」专题论文推荐
开放知识图谱
13+阅读 · 2018年2月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Query Embedding on Hyper-relational Knowledge Graphs
Arxiv
4+阅读 · 2021年6月17日
Arxiv
9+阅读 · 2020年10月29日
Inductive Relation Prediction by Subgraph Reasoning
Arxiv
11+阅读 · 2020年2月12日
Arxiv
21+阅读 · 2019年8月21日
Arxiv
4+阅读 · 2017年1月2日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
论文浅尝 |「知识表示学习」专题论文推荐
开放知识图谱
13+阅读 · 2018年2月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
相关论文
Query Embedding on Hyper-relational Knowledge Graphs
Arxiv
4+阅读 · 2021年6月17日
Arxiv
9+阅读 · 2020年10月29日
Inductive Relation Prediction by Subgraph Reasoning
Arxiv
11+阅读 · 2020年2月12日
Arxiv
21+阅读 · 2019年8月21日
Arxiv
4+阅读 · 2017年1月2日
Top
微信扫码咨询专知VIP会员