Estimating software effort has been a largely unsolved problem for decades. One of the main reasons that hinders building accurate estimation models is the often heterogeneous nature of software data with a complex structure. Typically, building effort estimation models from local data tends to be more accurate than using the entire data. Previous studies have focused on the use of clustering techniques and decision trees to generate local and coherent data that can help in building local prediction models. However, these approaches may fall short in some aspect due to limitations in finding optimal clusters and processing noisy data. In this paper we used a more sophisticated locality approach that can mitigate these shortcomings that is Locally Weighted Regression (LWR). This method provides an efficient solution to learn from local data by building an estimation model that combines multiple local regression models in k-nearest-neighbor based model. The main factor affecting the accuracy of this method is the choice of the kernel function used to derive the weights for local regression models. This paper investigates the effects of choosing different kernels on the performance of Locally Weighted Regression of a software effort estimation problem. After comprehensive experiments with 7 datasets, 10 kernels, 3 polynomial degrees and 4 bandwidth values with a total of 840 Locally Weighted Regression variants, we found that: 1) Uniform kernel functions cannot outperform non-uniform kernel functions, and 2) kernel type, polynomial degrees and bandwidth parameters have no specific effect on the estimation accuracy.


翻译:估计软件的努力在几十年中基本上是一个未解决的问题。 妨碍建立准确估算模型的主要原因之一是软件数据具有复杂的结构, 其特性往往不一。 通常, 从本地数据建立努力估算模型往往比使用全部数据更准确。 以前的研究侧重于使用集群技术和决策树来生成有助于建立本地预测模型的本地和一致的数据。 然而, 这些方法在某些方面可能不尽如人意, 原因是在寻找最佳集群和处理噪音数据方面存在限制。 在本文中, 我们使用了更复杂的本地参数, 以缓解这些缺点, 即局部加权回归( LWR) 。 这种方法提供了一个有效的解决方案, 通过构建一个将多个本地回归模型结合到 k- 近邻模型中的多个本地回归模型来学习本地数据。 影响该方法准确性的主要因素是选择用来计算本地回归模型加权值的内核函数。 本文研究了选择不同的内核内核对于本地加权递增40 软件努力度( LWRWR) 度( LWRW) 准确度( LWR) 准确度(LWER) ) 的精确度(LWE) 。 这个方法提供了一个有效的解决方案,, 通过构建一个有效的方法来从本地数据模型来从本地数据模型中学习 4 的模型中得出总值。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
70+阅读 · 2022年6月28日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
47+阅读 · 2021年1月20日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
70+阅读 · 2022年6月28日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
47+阅读 · 2021年1月20日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员