We describe a simple quantum algorithm for preparing $K$ copies of an $N$-dimensional quantum state whose amplitudes are given by a quantum oracle. Our result extends a previous work of Grover, who showed how to prepare one copy in time $O(\sqrt{N})$. In comparison with the naive $O(K\sqrt{N})$ solution obtained by repeating this procedure~$K$ times, our algorithm achieves the optimal running time of $\theta(\sqrt{KN})$. Our technique uses a refinement of the quantum rejection sampling method employed by Grover. As a direct application, we obtain a similar speed-up for obtaining $K$ independent samples from a distribution whose probability vector is given by a quantum oracle.
翻译:我们描述一个简单的量子算法,用于制作以美元为单位的一元量子状态的复制品,其振幅由量子器表示。我们的结果延续了Grover以前的工作,后者展示了如何及时制成一元(O) (sqrt{N}) 美元。与通过重复这个程序获得的天真美元(K) 方案相比,我们的算法实现了美元(sqrt{KN}) 美元的最佳运行时间。我们的技术利用了Grover使用的量子拒绝取样方法的改进。作为直接应用,我们获得了类似的加速,以便从其概率矢量子给定的分布中获取一美元独立样本。