Tanner codes are long error correcting codes obtained from short codes and a graph, with bits on the edges and parity-check constraints from the short codes enforced at the vertices of the graph. Combining good short codes together with a spectral expander graph yields the celebrated expander codes of Sipser and Spielman, which are asymptotically good classical LDPC codes. In this work we apply this prescription to the left-right Cayley complex that lies at the heart of the recent construction of a $c^3$ locally testable code by Dinur et al. Specifically, we view this complex as two graphs that share the same set of edges. By defining a Tanner code on each of those graphs we obtain two classical codes that together define a quantum code. This construction can be seen as a simplified variant of the Panteleev and Kalachev asymptotically good quantum LDPC code, with improved estimates for its minimum distance. This quantum code is closely related to the Dinur et al. code in more than one sense: indeed, we prove a theorem that simultaneously gives a linearly growing minimum distance for the quantum code and recovers the local testability of the Dinur et al. code.
翻译:坦纳代码是长期错误, 纠正从短代码和图形中获得的代码, 边边上有位数, 边边上有短代码的对等检查限制 。 将良好的短代码与光谱扩展图相结合, 就能产生Sipser 和 Spielman 的著名扩展代码, 它们是平庸的经典LDPC 古典代码。 在这项工作中, 我们把这个处方应用到位于Dinur等人最近构建的 $C$3 本地可测试代码的核心的左翼 Cayley 综合体。 具体地说, 我们把这个复杂点看成是两张共享一组边缘的图形。 通过在每张图上定义一条坦纳代码, 我们得到了两个经典代码, 共同定义了量子代码。 这个构造可以被视为Panteleev 和 Kalachev 的简化的变量, 其最短距离的估计数得到改进。 这个量子代码与Dinur et al. 代码在不止一个意义上与 Dinur 等 代码密切相关: 事实上, 我们证明一种可同时测量成直线度和直径测算法。