We use autoregressive hidden Markov models and a time-frequency approach to create meaningful quantitative descriptions of behavioral characteristics of cerebellar ataxias from wearable inertial sensor data gathered during movement. Wearable sensor data is relatively easily collected and provides direct measurements of movement that can be used to develop useful behavioral biomarkers. Sensitive and specific behavioral biomarkers for neurodegenerative diseases are critical to supporting early detection, drug development efforts, and targeted treatments. We create a flexible and descriptive set of features derived from accelerometer and gyroscope data collected from wearable sensors while participants perform clinical assessment tasks, and with them estimate disease status and severity. A short period of data collection ($<$ 5 minutes) yields enough information to effectively separate patients with ataxia from healthy controls with very high accuracy, to separate ataxia from other neurodegenerative diseases such as Parkinson's disease, and to give estimates of disease severity.


翻译:我们使用自动递减隐藏的Markov模型和时间频率方法,对在流动期间收集的磨损性惯性传感器数据中小螺旋型外科动物的行为特征进行有意义的定量描述; 较容易收集的感应器数据比较容易收集,并直接测量可用于开发有用的行为生物标志的动向; 神经降解性疾病的敏感和特定行为生物标志对于支持早期发现、药物开发工作和有针对性的治疗至关重要; 我们制作了一套灵活和描述性的特征,这些特征来自在参与者执行临床评估任务时从可磨损感应收集的加速仪和陀螺仪数据,并用这些数据来估计疾病状况和严重程度。 短期的数据收集( < 5分钟)产生足够的信息,可以有效地将患有病变病的病人与非常精确的健康控制分开,将癌症与其他神经退化性疾病如帕金森氏病分开,并估计疾病的严重程度。

0
下载
关闭预览

相关内容

可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能,可穿戴设备将会对我们的生活、感知带来很大的转变。
专知会员服务
49+阅读 · 2021年4月24日
专知会员服务
53+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月14日
Arxiv
0+阅读 · 2021年10月14日
Arxiv
0+阅读 · 2021年10月13日
Arxiv
0+阅读 · 2021年10月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员