Analyzing time series in the frequency domain enables the development of powerful tools for investigating the second-order characteristics of multivariate stochastic processes. Parameters like the spectral density matrix and its inverse, the coherence or the partial coherence, encode comprehensively the complex linear relations between the component processes of the multivariate system. In this paper, we develop inference procedures for such parameters in a high-dimensional, time series setup. In particular, we first focus on the derivation of consistent estimators of the coherence and, more importantly, of the partial coherence which possess manageable limiting distributions that are suitable for testing purposes. Statistical tests of the hypothesis that the maximum over frequencies of the coherence, respectively, of the partial coherence, do not exceed a prespecified threshold value are developed. Our approach allows for testing hypotheses for individual coherences and/or partial coherences as well as for multiple testing of large sets of such parameters. In the latter case, a consistent procedure to control the false discovery rate is developed. The finite sample performance of the inference procedures proposed is investigated by means of simulations and applications to the construction of graphical interaction models for brain connectivity based on EEG data are presented.
翻译:在频率范围内分析时间序列,有助于开发强有力的工具,调查多变随机过程的二阶特性。光谱密度矩阵及其反向、一致性或部分一致性等参数,全面编码多变系统各组成部分之间复杂的线性关系。在本文件中,我们为高维、时间序列设置中的这些参数制定了推论程序。特别是,我们首先侧重于对一致性的一致估计,更重要的是,对适合测试目的的可控限制分布分布的局部一致性进行一致估计。对关于部分一致性的频率最高不超过部分一致性频率的假设的统计测试已经制定。我们的方法允许对个人一致性和/或部分一致性的假设进行测试,并对大型参数进行多次测试。在后一种情况下,我们首先侧重于对控制虚假发现率的一致估计程序制定了一个一致的程序。提议的推断程序的有限样本性表现是通过模拟和对根据EEG数据构建的大脑连通性图像互动模型进行模拟和应用来调查的。