项目名称: 电磁波与压电陶瓷材料相互作用研究

项目编号: No.61271097

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 童美松

作者单位: 同济大学

项目金额: 80万元

中文摘要: 波与物质相互作用可能包含多个物理过程,取决于波与物质的特性。在电磁波与弹性介质的相互作用中,既包含电磁学过程又包含弹性力学过程并且相互耦合在一起。要精确描述和分析其中包含的物理过程,需要同时求解耦合在一起的电磁学和弹性力学方程。早期对这一问题的研究主要基于原始的偏微分方程且只局限于简单问题的解析解和数值解。在近十多年中,该问题的研究一直没有引起学术界重视,主要因为一般物质的弹性极弱,两个过程的耦合基本可以忽略。然而现代高科技的发展,特别是纳米电子产品的研发、对生物医学成像品质的追求、大功率微波辐射的存在、以及压电陶瓷传感器的广泛使用等,已越来越多地要求对电磁波与弹性介质的相互作用有更精确的分析,以设计出更高品质的产品。在本项目中,我们以压电陶瓷材料为目标,使用积分方程法推导和求解耦合积分方程,研究强电磁环境下它的形变规律及射频信号或声信号激励下它的辐射特性,为探索相关天线设计提供理论基础。

中文关键词: 电磁场特性;复杂目标;算法;建模;仿真

英文摘要: The interaction of waves with materials could include multiple physics (multiphysics), depending on the properties of waves and materials. For the interaction between electromagnetic wave and elastic media, the electromagnetic and elastodynamic processes exist simultaneously and they are coupled together. To exactly describe and analyze the involved physics process, the coupled electromagnetic equations and elastodynamic equations should be solved. The early research work on the problem was mainly based on the original partial differential equations for governing the problem and only analytical or numerical solutions for some simple cases were pursued. In recent ten plus years, the problem has not received a sufficient attention, probably because the elasticity of general materials is very weak and the coupling of the two processes is almost negligible. However, the fast development of modern science and technology, in particular, the appearance of nanoelectronic products, pursuit to the high quality of biological and medical imaging, existence of high-power microwave radiation, and extensive application of piezoelectric ceramic sensors, etc., has more and more required exact analyses for the interaction of electromagnetic wave with the elastic media, so that more efficient and reliable products can be designed.

英文关键词: Electromagnetic Field Characteristic;Complex Object;Algorithm;Modeling;Simulation

成为VIP会员查看完整内容
0

相关内容

【AAAI 2022】299页PPT,NUS最全《自动合成》教程
专知会员服务
18+阅读 · 2022年3月17日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
31+阅读 · 2021年5月7日
【干货书】面向计算科学和工程的Python导论,167页pdf
专知会员服务
41+阅读 · 2021年4月7日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
专知会员服务
23+阅读 · 2021年3月18日
专知会员服务
76+阅读 · 2021年3月16日
最新《自动微分手册》77页pdf
专知会员服务
100+阅读 · 2020年6月6日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
爷青回!可以拆电池的智能手机,要复活了?
ZEALER订阅号
0+阅读 · 2022年3月18日
2022 年你最想拥有什么电子产品?
ZEALER订阅号
0+阅读 · 2022年1月9日
中国高校最强超算!上算引力波,下算光量子
量子位
0+阅读 · 2021年12月15日
生物特征识别学科发展报告
专知
1+阅读 · 2021年3月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
24+阅读 · 2021年6月25日
小贴士
相关VIP内容
【AAAI 2022】299页PPT,NUS最全《自动合成》教程
专知会员服务
18+阅读 · 2022年3月17日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
31+阅读 · 2021年5月7日
【干货书】面向计算科学和工程的Python导论,167页pdf
专知会员服务
41+阅读 · 2021年4月7日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
专知会员服务
23+阅读 · 2021年3月18日
专知会员服务
76+阅读 · 2021年3月16日
最新《自动微分手册》77页pdf
专知会员服务
100+阅读 · 2020年6月6日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员