Solving combinatorial optimization (CO) on graphs is among the fundamental tasks for upper-stream applications in data mining, machine learning and operations research. Despite the inherent NP-hard challenge for CO, heuristics, branch-and-bound, learning-based solvers are developed to tackle CO problems as accurately as possible given limited time budgets. However, a practical metric for the sensitivity of CO solvers remains largely unexplored. Existing theoretical metrics require the optimal solution which is infeasible, and the gradient-based adversarial attack metric from deep learning is not compatible with non-learning solvers that are usually non-differentiable. In this paper, we develop the first practically feasible robustness metric for general combinatorial optimization solvers. We develop a no worse optimal cost guarantee thus do not require optimal solutions, and we tackle the non-differentiable challenge by resorting to black-box adversarial attack methods. Extensive experiments are conducted on 14 unique combinations of solvers and CO problems, and we demonstrate that the performance of state-of-the-art solvers like Gurobi can degenerate by over 20% under the given time limit bound on the hard instances discovered by our robustness metric, raising concerns about the robustness of combinatorial optimization solvers.
翻译:在图表中,解决组合优化(CO)是数据挖掘、机器学习和操作研究中上游应用的基本任务之一。尽管对COCO存在固有的NP-硬性挑战,但是,由于有限的预算时间有限,为尽可能准确地解决COO问题开发了基于学习的分支解决方案,以尽可能准确地解决CO问题。然而,对于CO解答器的敏感性,现有理论指标仍然基本上没有探索。现有理论指标需要最佳的解决方案,这是不可行的,而深层次学习的梯度基对抗性攻击指标与通常无法区分的非学习解决器不兼容。在本文中,我们为一般组合优化解决器开发了第一个实际可行的强健度指标。我们没有制定更差的最佳成本保障,因此不需要最佳解决方案,我们通过采用黑箱对抗性攻击方法解决无差别的挑战。对14个解决方案和CO问题的独特组合进行了广泛的实验,我们证明,像Gurobi这样的基于梯度的对抗性攻击性攻击性攻击性指标与通常无法区分的非学习解决器不兼容。在本文中,我们为一般的组合优化优化优化处理器开发出超过20 %的硬度的硬度的硬度的硬度标准,通过我们所发现的硬度调整了硬度的硬度的硬度的硬度,在硬度上发现硬度的硬度的硬度的硬度的硬度的硬度的硬度的硬度的硬度上所发现的硬度上,在硬度上所发现的硬度上发现的硬度上发现的硬度上发现的硬度上,在硬度上发现的硬度上的行为可能会使硬度上。