We propose a way to favorably employ neural networks in the field of non-destructive testing using Full Waveform Inversion (FWI). The presented methodology discretizes the unknown material distribution in the domain with a neural network within an adjoint optimization. To further increase efficiency of the FWI, pretrained neural networks are used to provide a good starting point for the inversion. This reduces the number of iterations in the Full Waveform Inversion for specific, yet generalizable settings.
翻译:我们建议采用非破坏性测试领域使用非破坏性神经网络的方式,使用全波反转法(FWI)进行无损测试。 所介绍的方法将未知物质在域内的分布与神经网络分离,在一个联合优化范围内使用一个神经网络。 为了进一步提高FWI的效率,预先培训的神经网络被用来为反转提供一个良好的起点。 这减少了全波反转中特定但可推广的环境的迭代次数。