We propose a novel bootstrap procedure for dependent data based on Generative Adversarial networks (GANs). We show that the dynamics of common stationary time series processes can be learned by GANs and demonstrate that GANs trained on a single sample path can be used to generate additional samples from the process. We find that temporal convolutional neural networks provide a suitable design for the generator and discriminator, and that convincing samples can be generated on the basis of a vector of iid normal noise. We demonstrate the finite sample properties of GAN sampling and the suggested bootstrap using simulations where we compare the performance to circular block bootstrapping in the case of resampling an AR(1) time series processes. We find that resampling using the GAN can outperform circular block bootstrapping in terms of empirical coverage.
翻译:我们根据基因反转网络(GANs)为依赖性数据提出了一个新的诱导程序;我们表明,通用固定时间序列过程的动态可以由GANs学习,并表明,在单一样本路径上受过训练的GANs可以用来从该过程产生更多的样品;我们发现,时间共变神经网络为生成者和导体提供了适当的设计,而且根据一种正常噪音的矢量可以产生令人信服的样品;我们通过模拟来展示GAN取样的有限样本特性和所建议的靴子,在模拟中我们将性能与AR(1)时间序列过程的循环轮式轮式轮式轮式轮式轮式轮式比作进行比较。我们发现,使用GAN进行重新采样可以在经验覆盖方面超过圆形轮式轮式轮式轮式轮式轮式靴。