This work investigates the use of robust optimal transport (OT) for shape matching. Specifically, we show that recent OT solvers improve both optimization-based and deep learning methods for point cloud registration, boosting accuracy at an affordable computational cost. This manuscript starts with a practical overview of modern OT theory. We then provide solutions to the main difficulties in using this framework for shape matching. Finally, we showcase the performance of transport-enhanced registration models on a wide range of challenging tasks: rigid registration for partial shapes; scene flow estimation on the Kitti dataset; and nonparametric registration of lung vascular trees between inspiration and expiration. Our OT-based methods achieve state-of-the-art results on Kitti and for the challenging lung registration task, both in terms of accuracy and scalability. We also release PVT1010, a new public dataset of 1,010 pairs of lung vascular trees with densely sampled points. This dataset provides a challenging use case for point cloud registration algorithms with highly complex shapes and deformations. Our work demonstrates that robust OT enables fast pre-alignment and fine-tuning for a wide range of registration models, thereby providing a new key method for the computer vision toolbox. Our code and dataset are available online at: https://github.com/uncbiag/robot.
翻译:这项工作调查了如何使用强力最佳运输( OT) 来匹配形状。 具体地说, 我们显示最近的 OT 解答器改进了点云注册的优化和深层次学习方法, 提高了精确度, 以可承担的计算成本。 本手稿首先对现代 OT 理论进行实用的概述。 然后我们为使用此框架进行形状匹配的主要困难提供了解决方案。 最后, 我们展示了运输强化登记模型在一系列具有挑战性的任务上的性能: 对部分形状的严格登记; Kiti 数据集的现场流量估计; 以及肺血管树在灵感和到期之间的非对称性注册。 我们基于 OT 的方法在基蒂和具有挑战性的肺注册任务上取得了最先进的结果, 无论是准确性还是可缩放性。 我们还发布了 PVT1010, 一个新的由1 010 套肺血管树组成的公共数据集。 这个数据集为极复杂形状和变形的点云登记算法提供了具有挑战性的例子。 我们的工作表明, 坚固的OT 能够使快速的预感/ 和微调的电脑模型用于新的计算机 。