We propose 3DSmoothNet, a full workflow to match 3D point clouds with a siamese deep learning architecture and fully convolutional layers using a voxelized smoothed density value (SDV) representation. The latter is computed per interest point and aligned to the local reference frame (LRF) to achieve rotation invariance. Our compact, learned, rotation invariant 3D point cloud descriptor achieves 94.9% average recall on the 3DMatch benchmark data set, outperforming the state-of-the-art by more than 20 percent points with only 32 output dimensions. This very low output dimension allows for near realtime correspondence search with 0.1 ms per feature point on a standard PC. Our approach is sensor- and sceneagnostic because of SDV, LRF and learning highly descriptive features with fully convolutional layers. We show that 3DSmoothNet trained only on RGB-D indoor scenes of buildings achieves 79.0% average recall on laser scans of outdoor vegetation, more than double the performance of our closest, learning-based competitors. Code, data and pre-trained models are available online at https://github.com/zgojcic/3DSmoothNet.
翻译:我们建议3DSmoothNet(3DSmoothNet),这是一个将3D点云与深深层学习架构和完全卷变层匹配的完整工作流程,它使用一个蒸气平滑密度值(SDV)代表来将3D点云与3A点云匹配为平滑密度值(SDV),后者按每个利益点计算,并与本地参考框架(LRF)相匹配,以实现旋转变化。我们的3DMatch基准数据显示,3DSmoothNet仅接受RGB-D室内场景培训,平均回溯94.9%,以超过20%的点来完成最新技术,只有32个输出层面。这一极低的产出层面允许在标准PC的每个特征点上用0.1ms进行近实时通信搜索。我们的方法是传感器和场景分析,因为SDV、LRFS和学习全革命层的高度描述性特征。我们显示,3DSmoootNetsmoothNet仅接受RGB室内场景培训的平均回溯79.0%,超过我们最接近、以学习为基础的竞争者的业绩的两倍。代码、数据和预训练模型可在 http://givDSDSDSDSDSDSDS.