Sports betting's recent federal legalisation in the USA coincides with the golden age of machine learning. If bettors can leverage data to accurately predict the probability of an outcome, they can recognise when the bookmaker's odds are in their favour. As sports betting is a multi-billion dollar industry in the USA alone, identifying such opportunities could be extremely lucrative. Many researchers have applied machine learning to the sports outcome prediction problem, generally using accuracy to evaluate the performance of forecasting models. We hypothesise that for the sports betting problem, model calibration is more important than accuracy. To test this hypothesis, we train models on NBA data over several seasons and run betting experiments on a single season, using published odds. Evaluating various betting systems, we show that optimising the forecasting model for calibration leads to greater returns than optimising for accuracy, on average (return on investment of $110.42\%$ versus $2.98\%$) and in the best case ($902.01\%$ versus $222.84\%$). These findings suggest that for sports betting (or any forecasting problem where decisions are made based on the predicted probability of each outcome), calibration is a more important metric than accuracy. Sports bettors who wish to increase profits should therefore optimise their forecasting model for calibration.


翻译:最近美国联邦体育赌博的联邦法律化最近在美国的体育赌博,恰好与机器学习的黄金时代相吻合。如果赌徒能够利用数据来准确预测结果的概率,那么他们就能发现,当赌博者的胜算有利的时候,他们就能发现。由于体育赌博仅在美国就是一个数十亿美元的行业,因此确定这种机会可能非常有利。许多研究人员对体育结果预测问题应用了机器学习,通常使用精确度来评价预测模型的性能。我们假设,对于体育赌博问题,模型校准比准确性要重要得多。为了测试这一假设,我们在几个季节里对NBA数据进行模型培训,并在一个季节里用公布的胜算进行赌博试验。在评估各种赌博时,我们显示,对各种赌博的预测模式的优化比对准确性的优化要好得多,平均(投资回报为110.42 美元对2.98 美元),在最佳案例中(902.01美元对222.84美元对222.84 美元) 。这些结论表明,对于体育赌博(或任何预测问题,根据每个结果的预期概率来作决定的预测,利用公布的概率来进行赌博,因此,校准比标准更重要得多。</s>

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年4月30日
Arxiv
0+阅读 · 2023年4月30日
Arxiv
57+阅读 · 2022年1月5日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员