In this letter, we introduce a new syndrome-based decoder where a deep neural network (DNN) estimates the error pattern from the reliability and syndrome of the received vector. The proposed algorithm works by iteratively selecting the most confident positions to be the error bits of the error pattern, updating the vector received when a new position of the error pattern is selected. Simulation results for the (63,45) and (63,36) BCH codes show that the proposed approach outperforms existing neural network decoders. In addition, the new decoder is flexible in that it can be applied on top of any existing syndrome-based DNN decoder without retraining.
翻译:在这封信中,我们引入了一个新的基于综合症的解码器,在这个解码器中,深神经网络(DNN)根据所接收矢量的可靠性和综合症来估计错误模式。提议的算法通过迭代选择最自信的位置作为错误模式的错误位数来发挥作用,在选择错误模式的新位置时更新收到的矢量。模拟(63,45)和(63,36) BCH 代码的结果显示,拟议的方法优于现有的神经网络解码器。此外,新的解码器具有灵活性,可以在任何现有的基于综合症的 DNND解码器之外不加再培训地加以应用。