Flow-based generative models have become an important class of unsupervised learning approaches. In this work, we incorporate the key ideas of renormalization group (RG) and sparse prior distribution to design a hierarchical flow-based generative model, RG-Flow, which can separate information at different scales of images and extract disentangled representations at each scale. We demonstrate our method on synthetic multi-scale image datasets and the CelebA dataset, showing that the disentangled representations enable semantic manipulation and style mixing of the images at different scales. To visualize the latent representations, we introduce receptive fields for flow-based models and show that the receptive fields of RG-Flow are similar to those of convolutional neural networks. In addition, we replace the widely adopted isotropic Gaussian prior distribution by the sparse Laplacian distribution to further enhance the disentanglement of representations. From a theoretical perspective, our proposed method has $O(\log L)$ complexity for inpainting of an image with edge length $L$, compared to previous generative models with $O(L^2)$ complexity.


翻译:基于流动的基因变异模型已成为不受监督的学习方法的一个重要类别。 在这项工作中,我们吸收了重新整顿组(RG)和分散的先前分布的关键理念,以设计一个基于分级流的基因变异模型(RG-Flow),该模型可以在不同比例尺图像尺度上分离信息,并在每个比例尺上提取分解的表达方式。我们在合成多尺度图像数据集和CelebA数据集上展示了我们的方法,表明分解的表达方式能够在不同比例尺上对图像进行语义操纵和风格混合。为了将潜在表达方式进行视觉化,我们为流基模型引入了可接受的域,并显示RG-Flow的可接受域类似于同动神经网络。此外,我们用稀释的拉普拉西亚分布方式取代了以前广泛采用的异位高斯分布,以进一步加强表达方式的分解。从理论上看,我们拟议的方法在用边缘长度为$L($L)的图像涂抹时具有$($)的复杂性。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
61+阅读 · 2020年3月19日
专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月4日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员