In this research work, we have demonstrated the application of Mask-RCNN (Regional Convolutional Neural Network), a deep-learning algorithm for computer vision and specifically object detection, to semiconductor defect inspection domain. Stochastic defect detection and classification during semiconductor manufacturing has grown to be a challenging task as we continuously shrink circuit pattern dimensions (e.g., for pitches less than 32 nm). Defect inspection and analysis by state-of-the-art optical and e-beam inspection tools is generally driven by some rule-based techniques, which in turn often causes to misclassification and thereby necessitating human expert intervention. In this work, we have revisited and extended our previous deep learning-based defect classification and detection method towards improved defect instance segmentation in SEM images with precise extent of defect as well as generating a mask for each defect category/instance. This also enables to extract and calibrate each segmented mask and quantify the pixels that make up each mask, which in turn enables us to count each categorical defect instances as well as to calculate the surface area in terms of pixels. We are aiming at detecting and segmenting different types of inter-class stochastic defect patterns such as bridge, break, and line collapse as well as to differentiate accurately between intra-class multi-categorical defect bridge scenarios (as thin/single/multi-line/horizontal/non-horizontal) for aggressive pitches as well as thin resists (High NA applications). Our proposed approach demonstrates its effectiveness both quantitatively and qualitatively.


翻译:在这一研究工作中,我们展示了将Mask-RCNN(区域革命神经网络)这一计算机视觉和具体物体探测的深学习算法应用于半导体缺陷检查领域,半导体制造过程中的沙变缺陷检测和分类已成为一项艰巨的任务,因为我们不断缩小了电路模式的尺寸(例如,对于低于32纳米的音轨),因此半导体制造过程中的沙变缺陷检测和分类已成为一项具有挑战性的任务;由最先进的光学和电子波束检查工具进行的缺陷检查和分析一般是由一些基于规则的技术驱动的,这些技术往往导致分类错误,从而需要人类专家的干预;在这项工作中,我们重新研究并扩展了我们以前深学习的缺陷分类和探测方法,目的是改进基于精细缺陷的SEM图像中的缺陷分解,并为每个缺陷类别/内分解形成一个遮罩。这也能够提取和校准每个分层的遮罩并量化构成每个面具的象素,这反过来使我们能够计算每一种直线性质量的缺陷,并计算出像素的表面区域。我们的目标是重新审视和分解的机机内部的机型机变的机变的机变形,以精确的机变的机变形,例如机变的机变的机变的机变的机变的机变形。

0
下载
关闭预览

相关内容

SEM 是 Search Engine Marketing 的缩写,中文意思是搜索引擎营销。SEM 是一种新的网络营销形式。SEM 所做的就是全面而有效的利用搜索引擎来进行网络营销和推广。SEM 追求最高的性价比,以最小的投入,获最大的来自搜索引擎的访问量,并产生商业价值。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
12+阅读 · 2019年4月9日
Arxiv
12+阅读 · 2019年3月14日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
VIP会员
相关VIP内容
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员