Interactive recommender systems (RSs) allow users to express intent, preferences and contexts in a rich fashion, often using natural language. One challenge in using such feedback is inferring a user's semantic intent from the open-ended terms used to describe an item, and using it to refine recommendation results. Leveraging concept activation vectors (CAVs) [21], we develop a framework to learn a representation that captures the semantics of such attributes and connects them to user preferences and behaviors in RSs. A novel feature of our approach is its ability to distinguish objective and subjective attributes and associate different senses with different users. Using synthetic and real-world datasets, we show that our CAV representation accurately interprets users' subjective semantics, and can improve recommendations via interactive critiquing
翻译:互动推荐系统(RSs)使用户能够以丰富的方式表达意图、偏好和背景,通常使用自然语言。使用这种反馈的一个挑战是如何从用于描述一个项目的开放术语中推断用户的语义意图,并用它来改进建议结果。运用概念激活矢量(CAVs)[21],我们开发一个框架,以学习一种反映这些属性的语义的表达方式,将其与RS的用户偏好和行为联系起来。我们方法的一个新特征是,它能够区分客观和主观属性,并将不同感知与不同的用户联系起来。我们利用合成和真实世界数据集,显示我们的CAV代表准确地解释用户的主观语义,并通过互动的曲解改进建议。