We present an approach for generating playable games that blend a given set of games in a desired combination using deep generative latent variable models. We refer to this approach as latent combinational game design -- latent since we use learned latent representations to perform blending, combinational since game blending is a combinational creativity process and game design since the approach generates novel, playable games. We use Gaussian Mixture Variational Autoencoders (GMVAEs), which use a mixture of Gaussians to model the VAE latent space. Through supervised training, each component learns to encode levels from one game and lets us define new, blended games as linear combinations of these learned components. This enables generating new games that blend the input games as well as control the relative proportions of each game in the blend. We also extend prior work using conditional VAEs to perform blending and compare against the GMVAE. Our results show that both models can generate playable blended games that blend the input games in the desired proportions.
翻译:我们提出一种方法来创造游戏,利用深层基因潜伏变量模型将一组游戏混合成理想组合。我们把这一方法称为潜伏组合游戏设计 -- -- 潜伏,因为我们使用学习的潜伏演示来进行混合,因为游戏混合是一种混合的创造过程,因为游戏混合是一种混合的游戏设计,因为这个方法产生了新颖的、可玩游戏。我们用高西亚混合混合混和自动自动游戏(GMVAEs)来模拟VAE潜伏空间。我们的结果显示,通过监督培训,每个组成部分都学会从一个游戏中编码级别,让我们将新的混合游戏定义为这些已学过的组件的线性组合。这可以产生新的游戏,混合输入游戏,并控制组合中每个游戏的相对比例。我们还利用有条件的 VAEs 来进行混合和比较。我们的结果显示,两种模型都可以生成可游戏的混合混合成理想比例的输入游戏。