Unsupervised learning is often used to uncover clusters in data. However, different kinds of noise may impede the discovery of useful patterns from real-world time-series data. In this work, we focus on mitigating the interference of interval censoring in the task of clustering for disease phenotyping. We develop a deep generative, continuous-time model of time-series data that clusters time-series while correcting for censorship time. We provide conditions under which clusters and the amount of delayed entry may be identified from data under a noiseless model. On synthetic data, we demonstrate accurate, stable, and interpretable results that outperform several benchmarks. On real-world clinical datasets of heart failure and Parkinson's disease patients, we study how interval censoring can adversely affect the task of disease phenotyping. Our model corrects for this source of error and recovers known clinical subtypes.


翻译:然而,不同种类的噪音可能阻碍从真实世界的时间序列数据中发现有用的模式。在这项工作中,我们注重减少间歇检查干扰疾病口腔组合的任务。我们开发了一个深度的基因化、连续时间的时间序列数据模型,这种时间序列数据可以按时间序列分组,同时纠正审查时间间隔。我们提供了根据无噪音模型从数据中识别集群和延迟输入数量的条件。在合成数据中,我们展示了准确、稳定和可解释的结果,这些结果超过了几个基准。在心脏衰竭和帕金森氏病患者的现实世界临床数据集中,我们研究了间检查如何对疾病口腔变化任务产生不利影响。我们为这一错误源和回收已知临床子类型提供了纠正模型。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2022年2月8日
Arxiv
31+阅读 · 2020年9月21日
Adversarial Metric Attack for Person Re-identification
VIP会员
相关资讯
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员