Gaussian graphical models are graphs that represent the conditional relationships among multivariate normal variables. The process of uncovering the structure of these graphs is known as structure learning. Despite the fact that Bayesian methods in structure learning offer intuitive and well-founded ways to measure model uncertainty and integrate prior information, frequentist methods are often preferred due to the computational burden of the Bayesian approach. Over the last decade, Bayesian methods have seen substantial improvements, with some now capable of generating accurate estimates of graphs up to a thousand variables in mere minutes. Despite these advancements, a comprehensive review or empirical comparison of all cutting-edge methods has not been conducted. This paper delves into a wide spectrum of Bayesian approaches used in structure learning, evaluates their efficacy through a simulation study, and provides directions for future research. This study gives an exhaustive overview of this dynamic field for both newcomers and experts.
翻译:暂无翻译