Flow diffusion models (FDMs) have recently shown potential in generation tasks due to the high generation quality. However, the current ordinary differential equation (ODE) solver for FDMs, e.g., the Euler solver, still suffers from slow generation since ODE solvers need many number function evaluations (NFE) to keep high-quality generation. In this paper, we propose a novel training-free flow-solver to reduce NFE while maintaining high-quality generation. The key insight for the flow-solver is to leverage the previous steps to reduce the NFE, where a cache is created to reuse these results from the previous steps. Specifically, the Taylor expansion is first used to approximate the ODE. To calculate the high-order derivatives of Taylor expansion, the flow-solver proposes to use the previous steps and a polynomial interpolation to approximate it, where the number of orders we could approximate equals the number of previous steps we cached. We also prove that the flow-solver has a more minor approximation error and faster generation speed. Experimental results on the CIFAR-10, CelebA-HQ, LSUN-Bedroom, LSUN-Church, ImageNet, and real text-to-image generation prove the efficiency of the flow-solver. Specifically, the flow-solver improves the FID-30K from 13.79 to 6.75, from 46.64 to 19.49 with $\text{NFE}=10$ on CIFAR-10 and LSUN-Church, respectively.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员