In reinforcement learning (RL), the long-term behavior of decision-making policies is evaluated based on their average returns. Distributional RL has emerged, presenting techniques for learning return distributions, which provide additional statistics for evaluating policies, incorporating risk-sensitive considerations. When the passage of time cannot naturally be divided into discrete time increments, researchers have studied the continuous-time RL (CTRL) problem, where agent states and decisions evolve continuously. In this setting, the Hamilton-Jacobi-Bellman (HJB) equation is well established as the characterization of the expected return, and many solution methods exist. However, the study of distributional RL in the continuous-time setting is in its infancy. Recent work has established a distributional HJB (DHJB) equation, providing the first characterization of return distributions in CTRL. These equations and their solutions are intractable to solve and represent exactly, requiring novel approximation techniques. This work takes strides towards this end, establishing conditions on the method of parameterizing return distributions under which the DHJB equation can be approximately solved. Particularly, we show that under a certain topological property of the mapping between statistics learned by a distributional RL algorithm and corresponding distributions, approximation of these statistics leads to close approximations of the solution of the DHJB equation. Concretely, we demonstrate that the quantile representation common in distributional RL satisfies this topological property, certifying an efficient approximation algorithm for continuous-time distributional RL.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2023年1月19日
Arxiv
21+阅读 · 2022年12月20日
A Survey on Data Augmentation for Text Classification
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
12+阅读 · 2023年1月19日
Arxiv
21+阅读 · 2022年12月20日
A Survey on Data Augmentation for Text Classification
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员