We consider the problem of supervised dimension reduction with a particular focus on extreme values of the target $Y\in\mathbb{R}$ to be explained by a covariate vector $X \in \mathbb{R}^p$. The general purpose is to define and estimate a projection on a lower dimensional subspace of the covariate space which is sufficient for predicting exceedances of the target above high thresholds. We propose an original definition of Tail Conditional Independence which matches this purpose. Inspired by Sliced Inverse Regression (SIR) methods, we develop a novel framework (TIREX, Tail Inverse Regression for EXtreme response) in order to estimate an extreme sufficient dimension reduction (SDR) space of potentially smaller dimension than that of a classical SDR space. We prove the weak convergence of tail empirical processes involved in the estimation procedure and we illustrate the relevance of the proposed approach on simulated and real world data.
翻译:我们考虑监督减少维度的问题,特别侧重于目标“Y\in\mathb{R}$Y\in\mathb{R}$的极端值,由共变矢量 $X\ in\mathbb{R<unk> p$解释。一般目的是界定和估计对共变空间的低维子空间的预测,该空间足以预测高于高阈值的目标的超量。我们提出了符合这一目的的“尾条件独立”原始定义。在“反反反反反反反反反”方法的启发下,我们开发了一个新颖的框架(TREX,Extreme反应的反反向反向反向),以便估计一个比典型的SDR空间小得多的极端足够维度缩小空间。我们证明,与估计程序有关的尾部经验过程的趋同性不甚强,我们说明了拟议方法对模拟数据和真实世界数据的适切性。</s>