In this paper, we introduce VACA, a novel class of variational graph autoencoders for causal inference in the absence of hidden confounders, when only observational data and the causal graph are available. Without making any parametric assumptions, VACA mimics the necessary properties of a Structural Causal Model (SCM) to provide a flexible and practical framework for approximating interventions (do-operator) and abduction-action-prediction steps. As a result, and as shown by our empirical results, VACA accurately approximates the interventional and counterfactual distributions on diverse SCMs. Finally, we apply VACA to evaluate counterfactual fairness in fair classification problems, as well as to learn fair classifiers without compromising performance.
翻译:在本文中,我们引入了VACA(VACA),这是一个在没有隐藏的混淆者的情况下进行因果推断的新型变异图形自动编码器,但只有观察数据和因果图表才能提供。在不做任何参数假设的情况下,VACA模仿了结构性因果关系模型(SCM)的必要特性,以便为近似干预(do-operator)和绑架行为预防步骤提供一个灵活和实用的框架。 因此,正如我们的经验结果所显示的那样,VACA准确估计了各种SCM的干预和反事实分布。 最后,我们应用VACA来评估公平分类问题中的反事实公平性,并学习公平的分类方法而不损害业绩。